FLiP-GD2 Pilot Study:

Is Fat in the Liver a marker of post-Pregnancy Glycaemic Deterioration in women with Gestational Diabetes?

Dr Tara Al-Rubyee¹, Christopher Marsh², Dr. Ingrid Britton³, Prof. Fahmy Hanna⁴

ST4 Radiology registrar, University Hospital of North Midlands ^{2.}Clinical Specialist Radiographer, University Hospital of North Midlands ^{3.}Consultant Radiologist, University Hospital of North Midlands ^{4.} Professor of Endocrinology and Metabolism, University Hospital of North Midlands

Gestational diabetes mellitus

Background: Gestational diabetes and fatty liver

•NAFLD is strongly associated with obesity, insulin resistance, and T2DM. The general population prevalence: 46%, rising to 74% in T2DM.

•Relationship Between NAFLD and T2DM-

- The incidence of T2DM is higher with moderate/severe NAFLD (12.3%) and mild NAFLD (3.4%). 1
- Worsening NAFLD severity linked to the highest T2DM risk (19.2%).
- UK Commission data shows liver disease, including NAFLD, on the rise.
- One-third of overweight individuals have NAFLD; 8% are at risk of fibrosis and have potential for progression to cirrhosis and cancer.

•NAFLD in Pregnancy

- Limited assessment of NAFLD in pregnancy and it's link to post-partum glycometabolic status.
- 2002 study, 14/27 (52%) young, obese, non-diabetic women with previous GDM demonstrated NAFLD postnatally that was associated with insulin resistance (3).
- 2011 study on postpartum women, demonstrated NAFLD was more than twice as common in women with previous GDM compared to those without previous GDM (4).

Post-Partum NAFLD in Women with Previous GDM

- NAFLD is twice as common in women with previous GDM.
- It is unclear if NAFLD during pregnancy links to glycaemic abnormalities and insulin resistance post-partum, potentially leading to T2DM.

Study Objectives

Objectives

PRIMARY To determine whether the presence of NAFLD during pregnancy in women with gestational diabetes mellitus is a marker of worse metabolic profile (insulin resistance)

SECONDARY To obtain detailed metabolic profiling in those with NAFLD vs those without NAFLD

To validate the performance of Ultrasound guided Fatty Liver Index in women with GDM against MRI as a gold standard as a potential screening tool for NAFLD post-partum

To validate the performance of third trimester ultrasound scan against MRI as a gold standard as a potential screening tool for NAFLD antenatally.

NAFLD: U/S vs MRI

US	Advantages	 Cost-Effective: Ultrasound is generally more cost-effective compared to MRI. Real-time Imaging. Widely Available: Can be done as part of antenatal screening ultrasound
	Limitations	 Operator Dependence. Limited Sensitivity: It may have limited sensitivity in detecting mild to moderate hepatic steatosis.
	Advantages	High Sensitivity: MRI is highly sensitive to the presence of fat, making it effective in detecting even mild hepatic steatosis.
MRI	Advantages	Quantitative Assessment: MRI can provide quantitative measures of fat content, such as the proton density fat fraction (PDFF).
	Limitations	Cost and Availability: Time-Consuming Not performed in pregnancy.

	Fatty liver Index			
	Grading	Criteria	Representative Example	
	Mild	 -Enhanced parenchymal echogenicity -NORMAL visualization of the: Intrahepatic vessel borders Posterior segments Diaphragm 		
Report template: Flip – GD2	Moderate	 Increased parenchymal echogenicity -DISTURBED visualization of the: Intrahepatic vessels Posterior segments Diaphragm 	le	
Parenchymal echogenicity: Normal / Enhanced / Increased Visualization: Intrahepatic vessels - YES/ DISTURBED/ POOR / ABSENT Posterior Segments- YES / DISTURBED / POOR / ABSENT	Severe	 Increased parenchymal echogenicity resulting in POOR/ABSENT visualization of the: Intrahepatic vessels Posterior segments Diaphragm 	lver Ner Ner	
Diaphragm- YES/ DISTURBED / POOR / ABSENT	Skoczylas, K. and Pawelas, A., 2015. Ultrasound imaging of the liver and bile ducts-expectations of a clinician. Journal of ultrasonography, 16(62), p.292.			

Steatosis grading: No observable fatty changes / Mild / Moderate / Severe

Methods:

• 27 patients were included in the pilot study between 1st July 2019 to 8th September 2023

• Inclusion criteria:

Pregnant women aged 18 and above diagnosed with GDM through oral glucose tolerance testing.

• Exclusion criteria:

• Pre-existing diabetes history of liver disease unwillingness to participate.

Results: 3rd Trimester Ultrasound Screening

37% of GDM females screened in the third trimester showed positive NAFLD on ultrasound.

Mild-moderate steatosis, 37%

No observable steatosis, 63%

Results: Postpartum MRI

- Correlating ultrasound with MRI- 26 patients underwent postpartum MRI
- Correlation coefficient was 0.901 (Strong positive concordance between ultrasound and MRI

MRI Vs. Ultrasound Match Mismatch 7% 93%

Phases of progressive deterioration in glycaemic status in women with gestational diabetes mellitus in relation to insulin resistance and β cell function. Integrating an NAFLD screening ultrasound into the early 12-week first-trimester ultrasound, instead of the current 24-week gestational age Glucose Tolerance Test (GTT) screening, offers the potential to arrest the progressive deterioration leading to gestational diabetes mellitus.

References

- 1. Centers for Disease Control and Prevention: national diabetes fact sheet: general information and national estimates on diabetes in the United States, 2011. Atlanta, GA: US Department of Health and Human Services, Centres for Disease Control and Prevention, 2011.
- 2. Sung K-C, Wild SH, Byrne CD. Resolution of fatty liver and risk of incident diabetes. Journal of Clinical Endocrinology and Metabolism. 2013;98:3637-3643.
- 3. Tiikkainen M, Tamminen M, Häkkinen AM, Bergholm R, Vehkavaara S, Halavaara J, Teramo K, Rissanen A, Yki-Järvinen H. Liver-fat accumulation and insulin resistance in obese women with previous gestational diabetes. Obesity Research. 2002;10:859-67.
- 4. Forbes S, Taylor-Robinson SD, Patel N, Allan P, Walker BR, Johnston DG. Increased prevalence of non-alcoholic fatty liver disease in European women with a history of gestational diabetes. Diabetologia. 2011;54:641-7.
- 5. Hanna F, Wu P, Heald A, Fryer A. Diabetes detection in women with gestational diabetes and polycystic ovarian syndrome BMJ 2023; 382 :e071675 doi:10.1136/bmj-2022-071675