

Improved multiphase liver CT scan quality with implementation of an optimised IV contrast protocol: A quality improvement project

Dewen Meng, Rahul Munyal, Pedro Vicente, Joao Martins, Aloysious Aravinthan, Anmol Gangi-Burton, Christopher Clarke

Nottingham University Hospitals NHS Trust

Background

- Technical variables that impact detection of liver lesions include time delay from the start of contrast injection, contrast dose, contrast concentration and injection rate [1].
- Hypervascular liver lesions including HCC rely on adequately timed and well opacified CT imaging for appropriate lesion detection and characterisation [2].
- Late arterial phase scan protocols should be patient-specific and use rapid bolus injections of large contrast material doses followed by a rapid bolus injection of saline [3].

Aims

To *qualitatively and quantitatively* assess the quality of CT liver images preand post-implementation of a **bolus-tracked and weight-based** intravenous contrast CT liver protocol

Methods

- A quality improvement project with retrospective data collection
- 50 consecutive patients in each group

	Pre-implementation (07/01/2021- 05/07/2021)	Post-implementation (06/03/2023- 08/07/2023)
Contrast dose	Fixed	Weight-based
Contrast injection rate	Fixed	Bolus-tracked

	Omnipaque 300			Omnipaque 350	
Weight	Omni	Flow	Weight	Omni	Flow
mongine	300	Rate	mongine	350	Rate
(kgs)	(mL)	(mL/s)	(kgs)	(mL)	(mL/s)
40	72	4.0	40	60	4.0
41	74	4.0	41	62	4.0
42	76	4.0	42	63	4.0
43	77	4.0	43	65	4.0
44	79	4.0	44	66	4.0
45	81	4.0	45	68	4.0
46	83	4.0	46	69	4.0
47	85	4.0	4/	/1	4.0
48	08	4.0	48	72	4.0
49	88	4.0	49	74	4.0
50	90	4.0	50	/5	4.0
50	92	4.0	50	70	4.0
52	94	4.0	52	/8	4.0
54	90	4.0	03	80	4.0
55	87	4.0	54	01	4.0
58	101	4.0	58	0.0	4.0
57	102	4.0	57	04	4.0
50	104	4.0	50	97	4.0
50	104	4.0	50	07	4.0
80	108	4.0	80	00	4.0
81	110	4.0	81	02	4.0
62	112	4.0	82	03	4.0
63	113	4.0	63	95	4.0
64	115	4.0	64	96	4.0
65	117	4.0	65	98	4.0
66	119	4.0	66	99	4.0
67	121	4.0	67	101	4.0
68	122	4.1	68	102	4.0
69	124	4.1	69	104	4.0
70	126	4.2	70	105	4.0
71	128	4.3	71	107	4.0
72	130	4.3	72	108	4.0
73	131	4.4	73	110	4.0
74	133	4.4	74	111	4.0
75	135	4.5	75	113	4.0
76	137	4.6	76	114	4.0
77	139	4.6	77	116	4.0
78	140	4.7	78	117	4.0
79	142	4.7	79	119	4.0
80	144	4.8	80	120	4.0
81	146	4.9	81	122	4.1
82	148	4.9	82	123	4.1
83	149	5.0	83	125	4.2
84	151	5.0	84	126	4.2
85	153	5.1	85	128	4.3
86	155	5.2	86	129	4.3
87	157	5.2	87	131	4.4

Methods

Quantitative approach

- 1. ROI delineation
 - One ROI (1 cm²) at the coeliac trunk level of abdominal aorta
 - Three ROIs (3 cm²) at the liver (avoid lesions and vessels)
 - One ROI (1 cm²) at the intrahepatic portal vein

Qualitative approach

1. Visual assessment as to whether the late arterial phase was timed correctly

Statistical analysis

- 1. Shapiro-Wilk test to check the distribution of continuous variables
- 2. T-test for group difference of normally distributed continuous variables
- 3. Mann Whitney U test for group difference of not normally distributed continuous variables
- 4. Chi-squared test for group difference of categorical variables

Results: Demographics

	Pre-implementation	Post-implementation	Р
Age, mean (SD)	68 (9.4)	65 (11.4)	0.08
Female, n (%)	12 (24%)	11 (22%)	0.81

Quantitative results: Contrast dose and rate

Mean contrast dose (ml)

Mean contrast injection rate (ml/s)

Quantitative results

Quantitative results

Quantitative results

Mean of liver ΔHU (from non-contrast phase to portal venous phase)

Qualitative results

Late arterial phase

Pre-implementation

Post-implementation

Portal venous phase

Qualitative results: Scan timing for the late arterial phase scan

Pre-implementation

Post-implementation

	Pre-implementation	Post-implementation	Р
Appropriate	32	42	0.039
Too early	18	8	

Conclusion

- Implementation of a bolus-tracked, weighted-based IV contrast CT liver protocol significantly improved image quality and lesion depiction
- Relatively easy to implement and has been rolled out to regional hospitals
- Improve confidence for diagnosing lesions

Acknowledgements

CT radiographer team, CT management team and data team in the NUH trust

Reference

- 1. Bae, K. T. (2010). "Intravenous Contrast Medium Administration and Scan Timing at CT: Considerations and Approaches." Radiology 256(1): 32-61.
- Jiang, J., et al. (2021). "An individualized Contrast-Enhanced Liver Computed Tomography Imaging Protocol Based on Body Mass Index in 126 Patients Seen for Liver Cirrhosis." Medical Science Monitor 27.
- 3. Kulkarni, N. M., et al. (2021). "Computed Tomography Techniques, Protocols, Advancements, and Future Directions in Liver Diseases." Magn Reson Imaging Clin N Am 29(3): 305-320.